Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma

نویسندگان

  • Mohamed A.Y. Abdel Malek
  • Sajjeev Jagannathan
  • Ehsan Malek
  • Douaa M. Sayed
  • Sahar A. Elgammal
  • Hanan G. Abd El-Azeem
  • Nabila M. Thabet
  • James J. Driscoll
چکیده

Despite the clinical benefit of the proteasome inhibitor bortezomib, multiple myeloma (MM) patients invariably relapse through poorly defined mechanisms. Myeloma cells inevitably develop chemoresistance that leads to disease relapse and patient-related deaths. Studies in tumor cell lines and biopsies obtained from patients refractory to therapy have revealed that myeloma cells adapt to stress by inducing expression of glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone with anti-apoptotic properties. Treatment of myeloma cells with bortezomib increased GRP78 levels and activated GRP78-dependent autophagy. Expression profiling indicated that GRP78-encoding HSPA5 was significantly upregulated in bortezomib-resistant cells. Co-treatment with the anti-diabetic agent metformin suppressed GRP78 and enhanced the anti-proliferative effect of bortezomib. Bortezomib treatment led to GRP78 co-localization with proteotoxic protein aggregates, known as aggresomes. Pharmacologic suppression, genetic ablation or mutational inactivation of GRP78 followed by bortezomib treatment led to the accumulation of aggresomes but impaired autophagy and enhanced anti-myeloma effect of bortezomib. GRP78 was co-immunoprecipitated with the KDEL receptor, an ER quality control regulator that binds proteins bearing the KDEL motif to mediate their retrieval from the Golgi complex back to the ER. Taken together, we demonstrate that inhibition of GRP78 functional activity disrupts autophagy and enhances the anti-myeloma effect of bortezomib.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics

The unfolded protein response is responsible for the detection of misfolded proteins and the coordination of their disposal and is necessary to maintain the cellular homoeostasis. Multiple myeloma cells secrete large amounts of immunoglobulins, proteins that need to be correctly folded by the chaperone system. If this process fails, the misfolded proteins have to be eliminated by the two main g...

متن کامل

Induction of GRP78 by valproic acid is dependent upon histone deacetylase inhibition.

Valproic (2-propylpentanoic) acid is a commonly used drug in the treatment of bipolar disorder and epilepsy. The molecular mechanism that underlies its clinical efficacy remains controversial and is complicated by the broad range of intracellular effects of valproic acid, including its ability to inhibit histone deacetylase (HDAC) and induce protein chaperone expression. Here we show that an es...

متن کامل

Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma

INTRODUCTION Multiple myeloma (MM) is a plasma cell neoplasm that is mostly incurable due to acquired resistance during the treatment course. Thus, we evaluated expression and release of glucose-regulated protein 78 kDa (GRP78/BiP), an endoplasmic reticulum (ER) based pro-survival chaperone involved in immunoglobulin folding and unfolded protein responses. RESULTS GRP78 protein expression in ...

متن کامل

Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells

The proteasome inhibitor bortezomib is an effective anti-cancer agent for the plasma cell malignancy multiple myeloma but clinical response is hindered by the emergence of drug resistance through unknown mechanisms. Drug sensitive myeloma cells were exposed to bortezomib to generate drug resistant cells that displayed a significant increase in subunits of the energy sensor AMP-activated protein...

متن کامل

14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes.

The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015